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Hysteresis and precession of a swirling jet normal to a wall
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Interaction of a swirling jet with a no-slip surface has striking features of fundamental and practical interest.
Different flow states and transitions among them occur at the same conditions in combustors, vortex tubes, and
tornadoes. The jet axis can undergo precession and bending in combustors; this precession enhances large-scale
mixing and reduces emissions of NOx. To explore the mechanisms of these phenomena, we address conically
similar swirling jets normal to a wall. In addition to the Serrin model of tornadolike flows, a new model is
developed where the flow is singularity free on the axis. New analytical and numerical solutions of the
Navier–Stokes equations explain occurrence of multiple states and show that hysteresis is a common feature of
wall-normal vortices or swirling jets no matter where sources of motion are located. Then we study the jet
stability with the aid of a new approach accounting for deceleration and nonparallelism of the base flow. An
appropriate transformation of variables reduces the stability problem for this strongly nonparallel flow to a set
of ordinary differential equations. A particular flow whose stability is studied in detail is a half-line vortex
normal to a rigid plane—a model of a tornado and of a swirling jet issuing from a nozzle in a combustor.
Helical counter-rotating disturbances appear to be first growing as Reynolds number increases. Disturbance
frequency changes its sign along the neutral curve while the wave number remains positive. Short disturbance
waves propagate downstream and long waves propagate upstream. This helical instability causes bending of
the vortex axis and its precession—the effects observed in technological flows and in tornadoes.

DOI: 10.1103/PhysRevE.69.016312 PACS number~s!: 47.90.1a, 47.20.2k
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I. INTRODUCTION

The axis of a swirling jet can undergo precession a
bending observed, e.g., in tornadoes and in combus
Combustors typically include a pipe followed by a large su
denly expanded chamber. The flow issuing from the p
forms a swirl-free or swirling jet in the chamber. This co
fined flow has two stable states at the same values of co
parameters@1#: in the first state, the jet propagates along t
chamber axis while in the second state, the jet rotates g
scopically around the axis, i.e., precesses. This precessi
a favorable feature of burner applications in, e.g., cement
glass kilns, because it enhances large-scale mixing
thereby delivers a significant reduction in emissions of Nx
@2#. Better understanding of the precession formation a
multiple-flow-state mechanisms should help us to optim
burner characteristics for minimizing harmful emissions.

To explain the development of precession, we model
axisymmetric flow state by a conical similarity solution
the Navier–Stokes equations and then apply a new stab
approach accounting for the base-flow deceleration
streamline divergence downstream. A model flow is a
issuing into a half-space from a point source on a no-
plane. That is, we do not consider the flow from the pipe a
instead replace the pipe with the point source. Also, we
glect the sidewall of the combustor chamber, i.e., cons
the flow in the region whose radial extent is small~large!
compared with the diameter of the chamber~pipe!. It is
shown that the interaction of the jet and the normal wal
itself sufficient to induce precession.

The jet axis in the model is a normal-to-plane half-li
1063-651X/2004/69~1!/016312~11!/$22.50 69 0163
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vortex singularity of a given circulation~characterized by the
swirl Reynolds number Res, which is the ratio of the maxi-
mum circulation to viscosity! and a given force acting alon
the axis. Taylor@3#, Goldshtik@4#, and Serrin@5# studied this
flow for different applications such as a fuel atomizer, a v
tex nuclear reactor, and a tornado~see review by Shtern an
Hussain@6# for details!. A striking feature of this model is
the solution loss as Res increases and reaches a rather sm
threshold value.

The solution disappearance via the development of a
gularity seems paradoxical and even contradictory for a
cous flow. For example, Taylor@3# found a boundary-layer
solution which is valid for large Res, while Goldshtik @4#
proved that the solution does not exist for Res.8 ~!!, and
Guilloud et al. @7# calculated the exact value, Reco55.53, at
which this solution collapses. Goldshtik and Shtern@8#
showed that a strong near-axis jet develops and the m
mum velocity of this jet tends to infinity as Res approaches
Reco. One would expect singularities to occur in the limit
Res→`, but not at a finite value. Note that all these resu
were obtained for a vortex with no axial force.

Serrin @5# explored this intriguing feature in a broade
context. He applied the vortex-wall model to tornadoes a
generalized the problem~in order to avoid the collapse! by
introducing an additional source of motion—forceFz
54prn2r 21A acting along the axis. HereA is a dimension-
less characteristic of the force strength per unit length,r is
the density,n is the kinematic viscosity, andr is the distance
from the jet origin. Figure 1 shows a schematic of this ha
line vortex, a typical streamline, and spherical coordinat
Figure 2 is a map of the flow patterns~the insets show the
©2004 The American Physical Society12-1
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V. SHTERN AND J. MI PHYSICAL REVIEW E69, 016312 ~2004!
meridional motion! on the parameter plane,k5Res/2 andP
5114 A Res

22 @5#.
Serrin @5# proved that the solution exists for arbitrari

large Res, providedA is properly chosen. However, the co
lapse paradox remained unresolved because such a so
describes a descending flow~inset A! or a two-cell flow~B!,
but not an ascending flow~C!: There is no solution to the
right of curveF and lineCo in Fig. 2. Serrin mentioned tha
he had failed to prove the uniqueness theorem for the en
parameter region where the solution exists. Numerical sim
lations by Goldshtik and Shtern@8# revealed that the problem
has more than one solution:F is a fold curve where two
regular solutions merge and disappear. They also showed
collapse occurs along lineCo, described byk2250.131P.

Thus, there are two different mechanisms of the solut
loss, i.e., collapse and fold, and only one~collapse! corre-
sponds to the singularity development. Both these ma
ematical features correspond to physical effects typica
swirling flows: ~a! strong accumulation of the axial mome
tum, e.g., occurring in tornadoes@9#, ~b! multiple flow states,
e.g., observed in vortex chambers@10#, and ~c! hysteretic
transitions among different flow states@11#.

All these effects are related to flow stability to infinites
mal and finite-amplitude disturbances. Shtern and Dra
@12# demonstrated a clear relation between stability a
hysteresis/folds in a tornado model. Their study, howev
was limited to disturbances without time oscillations. R

FIG. 1. Flow schematics and coordinates.

FIG. 2. Map of the flow states in the Serrin model,k is propor-
tional to the swirl Reynolds number andP characterizes the axia
force.
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cently, Shtern and Hussain@13# developed a more efficien
stability approach that addresses generic disturbances~i.e.,
including time oscillating!. An important advantage of this
approach is that it accounts for deceleration and nonpara
ism of conical flows and uses neither the parallel flow nor
boundary layer approximations. This advantage helped
find new instabilities missed by previous studies and to c
rect previous instability results~critical Reynolds numbers
appeared to be significantly smaller!.

Here we extend this nonparallel stability technique to
vortex-wall problem where a singularity is located on t
symmetry axis~e.g., in the Serrin vortex!. This allows us to
explore whether the flow becomes unstable befores
reaches its collapse value. As shown below, not only
instability indeed occurs, but also its presence results
bending and precession of the jet axis.

In the reminder of this paper, we first explore hysteresis
models of the vortex-wall flow with and without a singulari
on the axis~Sec. II!, then describe the stability approac
~Sec. III!, study the instability of the Serrin flow~Sec. IV!,
and finally make concluding remarks~Sec. V!.

II. HYSTERESIS

Before studying the stability of a swirling jet normal to
wall, we address here some important features of the b
flow, e.g., multiple steady states and hysteretic transiti
among them, as control parameters vary. As mentioned
Introduction, these features are typical of swirling flows.
addition to the examples in Sec. I, hysteretic transitions
observed above delta-wing aircraft@14# and in diverging vor-
tex tubes@15#. The most relevant for the present study a
hysteretic phenomena occurring in tornadoes@16# and in pre-
cessing jet nozzle chambers@1#.

Since hysteresis is a strongly nonlinear effect, its analy
is a challenge for theoretical and, especially, analytical st
ies. In this respect, modelling of practical swirling flows b
conical similarity solutions is beneficial, because it reduc
the Navier–Stokes equations to ordinary differential on
thus radically easing the analysis. Next, exploiting the f
that hysteresis occurs only when Res exceeds a threshold
asymptotic techniques as Res→` can be applied resulting
sometimes in analytical solutions. These solutions help
find multiple ~e.g., five@11#! steady flow states occurring a
the same values of control parameters and to explain hys
etic transitions among them.

Unfortunately, previous studies of hysteresis in coni
flows have been limited to swirling jets located far aw
from no-slip boundaries, while modelling of vortex prece
sion requires accounting for effects of a no-slip wall. O
objective of the present study is to fill this gap. In this se
tion, we consider two models of swirling flows near a no-s
boundary: the first one is the Serrin vortex having the stro
singularity on the symmetry axis and the second is a n
model with a weak singularity located on a conical surfa
away from both the axis and the wall. We will show belo
that multiple flow states and folds occur in both problems
2-2
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HYSTERESIS AND PRECESSION OF A SWIRLING JET . . . PHYSICAL REVIEW E 69, 016312 ~2004!
A. Hysteresis in the Serrin flow

The problem on swirling jets has no analytical solutio
except for some limiting cases. For this reason, together w
integration of the stability equations, we need also to num
cally solve the base-flow equations described below. Fo
conically similar flow, velocity has the representation,

v r52nr 21c8, vu52n~r sinu!21c,

vf52n~r sinu!21Gb~x!, C5nrc~x!, ~1!

where $r ,u,f% are spherical coordinates,r is the distance
from the origin,u is the polar angle, andf is the azimuthal
angle about the axis of symmetryz ~Fig. 1!, $v r ,vu ,vf% are
velocity components,C is the Stokes stream function, an
the prime denotes~here and in the paper remainder! differ-
entiation with respect tox5cosu.

Substitution of ~1! in the Navier–Stokes equations
spherical coordinates~e.g., Ref.@17#!, exclusion of pressure
and simple calculations yield the system of ordinary diff
ential equations@8#,

~12x2!c812xc2 1
2 c25F, ~2a!

~12x2!F-52GbGb8 , ~2b!

~12x2!Gb95cGb8 , ~2c!

where F is an auxiliary function defined by Eq.~2b!. The
boundary conditions on the symmetry axis,x51 ~i.e., u
50), are

c50, Gb5Res , F852A. ~2d!

The first condition of~2d! indicates that the axis is free from
a source of fluid, the second condition specifies a given
culation, so that swirl velocity,vf , has a pole singularity for
ResÞ0 according to~1!, and the third condition specifies
given axial force which corresponds to a logarithmic sing
larity of the radial velocity,v r @5#. These two singularities—
the line sources of angular and axial momenta located on
symmetry axis—model an entrainment flow driven by
swirling near-axis jet whose thickness is neglected. We sh
below that this flow has multiple states at the same value
Res andA.

It follows from ~2a! and ~2d! that

F~1!50. ~2e!

We generalize the Serrin problem@5# to a flow inside a cone
i.e., between the axis,x51, and a conical wall,x5xc , where
the no-slip condition yields that

c5Gb5F50 at x5xc . ~2f!

In the particular case,xc50 ~i.e., u590°), the conical sur-
face, x5xc , reduces to the normal-to-axis plane and t
problem reduces to the Serrin one. We address here the
geometry because~a! some vortex devices, e.g., hydroc
clones and Ranque tubes, have conical walls,~b! hysteretic
01631
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transitions occur, and~c! analytical solutions can be obtaine
in this more generic case as well.

Now we explore asymptotic solutions as Res→`. For
Res@1, the linear term in the left-hand side of~2c! becomes
negligible, i.e.,~2c! reduces tocGb850, and thereforeGb8
tends to 0, except at points wherec50, i.e., the limiting
Gb(x) is a step function. Owing to the different bounda
conditions ofGb(xc)50 andGb(1)5Res, Gb(x) must jump
at somex5xs . Consider, first, the case where the jump o
curs at an inner point of the interval, i.e.,xc,xs,1. Since
Gb8 is unbounded atx5xs , c(xs) must be zero, and, there
fore, the conical surface,x5xs , separates different flow cell
~see inset B in Fig. 2!. Inside each cell, the circulation i
uniform and equal to the corresponding boundary values

Gb~x!50 for xc<x,xs ~near-wall region 1!, ~3a!

Gb~x!5Res for xs,x<1 ~near-axis region 2!. ~3b!

Next, Gb850 reduces~2b! to F-50 and therefore,F(x) is a
quadratic polynomial~different in regions 1 and 2!. Satisfy-
ing conditions~2d!–~2 f! yields

F1~x!52b~x2xc!
2, ~4a!

F2~x!52
1

2
Res

2@~12P!~12x!2c~12x!2#, ~4b!

where subscripts 1 and 2 denoteF in regions 1 and 2, respec
tively, andP5114A/Res

2. To determineb, c, andP as func-
tions of xs and Res, consider matching conditions at th
separating surfacex5xs . At this surface,F(x) and F8(x)
are continuous whileF9(x) undergoes a jump whose valu
follows from integration of~2b! acrossx5xs ,

F1~xs!5F2~xs!, F18~xs!5F28~xs!,

F29~xs!2F19~xs!5Res
2/~12xs

2!. ~5!

From ~4! and ~5! we obtain

b5
1

2
Res

2~12xs!~11xs!
21~12xc!

22.0, ~6a!

c5~xs2xc!~22xs2xc!~12xs
2!21~12xc!

22.0, ~6b!

P5~12xs!~11xs!
21~11xc!~12xc!

21. ~6c!

It follows also thatF(x)<0 in the entire interval,xc<x
<1.

For Res@1, the linear terms on the left-hand side of~2a!
become negligible, and~2a! reduces toc2522F resulting
in

c1~x!5@22F1~x!#1/25~2b!1/2~x2xc! and

c2~x!52@22F2~x!#1/2. ~7!

The different signs ofc1 andc2 in ~7! are due to different
flow directions in the cells~see inset B in Fig. 2!. As a result,
2-3
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V. SHTERN AND J. MI PHYSICAL REVIEW E69, 016312 ~2004!
there is a jump inc(x) from c1(xs)5cs to c2(xs)52cs as
increasingx passesxs , wherecs5(2b)1/2(xs2xc).

The jumps in circulation and stream function indicate th
there is a viscous boundary layer near the separating sur
x5xs , where asx increases,c(x) decreases fromcs to 2cs
andGb(x) increases from 0 to Res according to~3!.

In this boundary layer,~2a! and ~2c! reduce to

~12xs
2!c812xsc2

1

2
c252cs

2 and ~12xs
2!Gb95cGb8 .

Introducing the ‘‘inner’’ variables,V52c/cs and j5cs(x
2xs)/(12xs

2), and allowing cs→`, we get dV/dj51
2V2, V5tanhj, and

c in52cs tanhj, G in5
1

2
Res~11tanhj!. ~8!

where subscript ‘‘in’’ denotes theinner solutions~i.e., within
the boundary layer!. These solutions describe a jet direct
radially outward along the separating surface~inset B in Fig.
2!.

The solution,G5 1
2 Res(11tanhj), can serve also as a un

form approximation for circulation in the entire flow regio
To get a uniform approximation for stream function, w
should combine the inviscid,~7!, and boundary-layer,~8!,
solutions to construct a composite solution@18#:

cc~x!52c1~x!tanhj for xc,x<xs

and cc~x!5c2~x!tanhj for xs<x,1. ~9!

Here subscriptc denotes thecompositesolution.
To determine the parameter range where this solution

ists we address~6c! which provides the relation betweenP
andxs . As xs increases fromxc to 1, P decreases from 1 to
0. Therefore, the two-cell solution exists in the range 0,P
,1 as Res→` ~see Fig. 2 where large Res correspond to a
vicinity of the abscissa!.

Figure 3 shows the numerical~solid curves! and compos-
ite asymptotic~dashed curves! solutions atxc50, xs50.5

FIG. 3. Comparison of the numeric~solid curve, Res5200) and
analytical ~broken curve, Res→`) solutions for a two-cell Serrin
flow. Gn andcn are normalized circulation and stream function,x
5cosu, and the inset shows the flow pattern.
01631
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(P51/3), and Res5200; cn5c(2b)1/2 andGn5G/Res. The
inset shows streamlines and flow direction~arrow!. To obtain
the numerical solution, we integrate~2! from x5xs in the
both directions~to x51 and tox5xc) starting with c50
and tentative values ofG, G8, F, F8, andF9 at x5xs . Then
we adjust these tentative values to satisfy~2f! and the first
and second conditions~2d!. The third condition~2d! speci-
fies A ~andP!, as a function ofxs . The numerical and ana
lytical solutions are close but do not coincide at this value
Res. In particular, the analytical solution does not descr
the boundary layer nearx5xc , because it does not satisf
the conditionc8(xc)50 that follows from no-slip.

Now we show that the one-cell solution, corresponding
a descending flow~inset A in Fig. 2!, exists at the same
parameter values as those where the two-cell flow occ
For the descending flow, Serrin@5# proved the existence
theorem atxc50. Here we construct an analytical solutio
for any xc and Res@1. For this one-cell case, region 2 d
fined in ~3b! occupies the entire flow domain. Therefore, t
inviscid solution for circulation is

Gbo~x!5Res for xc,x<1. ~10a!

The condition~2f!, F(xc)50, and ~4b! yield c5(12P)(1
2xc)

21 resulting in

Fo52
1

2
Res

2~12P!~12x!~x2xc!~12xc!
21, ~10b!

co~x!52@22Fo~x!#1/2

52
1

2
Res@~12P!~12x!~x2xc!~12xc!

21#1/2.

~10c!

Subscripto indicates that solutions~10! are validoutsidea
near-wall boundary layer.

Figure 4 shows the outer solution~10! ~dashed curves!
and numerical results~solid curves! at xc50, xs50, P
50.708, and Res5100 @cn5c Res

21(12P)21/2 and Gn

5G/Res]. The inset shows streamlines and the flow directi
~arrow!. As demonstrated, sufficiently away from the wa
the analytical and numerical solutions are close to each o
while the two solutions are well apart near the wall. In t
latter case, a viscous layer develops becauseco8(x) is un-
bounded andGbo(x)Þ0 at x5xc .

To find the boundary-layer solution, we introduce the
ner variables,

h5B~x2xc!, W52c/@B~12xc
2!#,

g5G/Res , and F52B2~12xc
2!F Res

22,

whereB5Res
1/2(12xc

2)23/4. Applying this transformation in
~2a!–~2c!, and allowing Res→`, we obtain the system

dW

dh
5F2

1

2
W2,

d2W

dh2 52W
dg

dh
,

d2F

dh2 512g2.

~11!
2-4
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HYSTERESIS AND PRECESSION OF A SWIRLING JET . . . PHYSICAL REVIEW E 69, 016312 ~2004!
The no-slip boundary conditions are

W~0!5F~0!5g~0!50. ~12!

Matching with the outer solution~10! yields two more con-
ditions,

g→1 and
dF

dh
→ 1

2
~12P!Res

1/2~12xc!
1/4 as h→`.

~13!

Alternatively, we can considerdF/dh(`) as a free param
eter ~.0! and find that

P5122 Res
21/2~12xc!

21/4
dF

dh
~`!. ~14!

This boundary-layer solution describes a near-wall swirl
jet directed away from the symmetry axis~inset A in Fig. 2!
and also a two-cell flow~inset B in Fig. 2! when the second
cell and the separating surfaces are inside the near-
boundary layer.

We have solved problem~11!–~13! numerically using the
following algorithm. Integration of~11! starts ath50 with
conditions ~12! and tentative values ofdF/dh(0) and
dg/dh(0). We run theintegration up toh5h f . Then we
adjustdF/dh(0) anddg/dh(0) by a shooting procedure t
satisfy conditions~13! at h5h f . Next we increaseh f until
values ofdF/dh(0) anddg/dh(0) become well establishe
~to this end,h f510 appears to be sufficient!.

Figure 5 shows the dependence ofdF/dh(0)
5d2W/dh2(0), which is proportional to the radial shear stre
at the wall, on dF/dh(h f) @which is very close to
dF/dh(`)]. As demonstrated, two flow states occur at t
same values ofdF/dh(`), i.e., at the same values ofP

FIG. 4. Comparison of the numeric~solid curve, Res5100) and
analytical~broken curve, Res→`) solutions for a one-cell descend
ing Serrin flow~see Fig. 3 for other notations!.
01631
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~when Re andxc are fixed!, as follows from~14!. The two
solution branches merge~and then disappear! asdF/dh(h f)
decreases~and passes the fold pointF!. Point S separates
one-cell (1c) and two-cell (2c) flows ~see insets A and B in
Fig. 2!.

Figure 6 shows profiles of the radial (dW/dh) and swirl
~g! velocities in the near-wall boundary layer
dF/dh(`)53 for the one-cell~a! and two-cell~c! flows.
Figure 6~b! shows the profiles at pointS in Fig. 5 where the
flow separation from the wall occurs. These profiles descr
in more detail the near-wall jet sketched by inset A in Fig.

We see that for any fixed Res@1 andP,1 @this limitation
follows from ~10c!#, two branches of solutions exist. Th

FIG. 5. Two solution branches for the near-wall boundary la
in the Serrin problem. The branches merge and terminate at the
point F. The flow is one-cellular (1c) and two-cellular (2c) above
and below pointS, where the flow separation from the wall occur

FIG. 6. Profiles of the radial (dW/dh) and swirl ~g! velocities
in the near-wall boundary layer for the one-cell~a!, separation~b!,
and two-cell~c! flows ~for points 1c, S and 2c in Fig. 5, respec-
tively!. The variableh is the scaled distance from the wall.
2-5
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V. SHTERN AND J. MI PHYSICAL REVIEW E69, 016312 ~2004!
result explains why Serrin@5# failed to prove the uniquenes
theorem, and, in addition, indicates that two flow states
occur at the same values of control parameters for any c
cal ~not only planar! wall.

Thus, the results of Sec. II A reveal that hysteresis i
typical feature of the Serrin@5# model describing near-wal
swirling flows. Hysteresis is a typical feature for the Lon
model @19# of free swirling jets as well@11#. Unfortunately,
both these models have serious limitations.

The Serrin model involves singularities on the axis a
therefore, describes practical flows away from the axis o
In contrast, the Long model well describes the near-axis fl
but does not satisfy the no-slip condition at a wall. A reas
for these limitations is the fact that a regular conical soluti
satisfying both the no-sip condition on a wall and the reg
larity condition on the axis, is identically zero~the rest state!.

Somewhere a source of fluid motion must be located. T
source is on the axis in the Serrin model and on the con
flow boundary in the Long model. To better model practic
flows, where both the near-axis and near-wall regions
important, e.g., tornadoes and vortex precession, it is rea
able to locate a source of motion~i.e., a singularity! some-
where in between the axis and the wall. We develop suc
model and explore its features in the next section.

B. Hysteresis in a weak-singularity model
of the near-wall vortex

A swirling jet has at least two sources of motion: one
the meridional flow and another for the swirl. Here we mod
these sources by weak singularities located away from b
the axis and the wall. We place these singularities on a c
cal surface,x5xj , separating regions of the upward an
downward flows where the vertical velocityvz5v r cosu
2vu sinu vanishes, i.e.,vz(xj )50. A motivation for such a
choice is that in practical wall-normal vortices~e.g., in tor-
nadoes!, circulation is transported by a horizontal wind fro
a remote region toward the vortex axis. Therefore, the s
face where the velocity is horizontal seems to be an ap
priate location for motion sources.

At this surface,x5xj , we prescribe jumps inF9 andGb8 .
The F9 jump serves as a source of the meridional mot
~when the flow is even swirl free as well! and theGb8 jump
serves as a source of swirl. Indeed, we will see that circ
tion, Gb , achieves its maximum atx5xj . Accordingly, to
characterize the strength of rotation, we define the swirl R
nolds number as a ratio of the maximum circulation to v
cosity, Res5Gb(xj). To characterize the strength of the m
ridional flow, we use the Long parameterM, which is a ratio
of the axial flow force to the maximum circulation square
M52pJ0 /Res

2, where

J05E
0

1

„x$~22c8!c82@~2x2c!c2xF8#~12x2!21%

2F8…dx ~15!

~for more details see Ref.@11#!. Since, for conical flows, the
tangential stresses and pressure~scaled byrn2r 22) are
01631
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tfu5Gb81~2x2c!Gb~12x2!21, t ru52F8~12x2!21/2,

and p5~2xc2xF82c2!~12x2!21,

tfu can have a jump whilet ru and p are continuous atx
5xj .

The numerical algorithm to solve this problem is brief
here. Integration of~2a!–~2c! starts at x51 with c(1)
5Gb(1)5F(1)5F8(1)50 and tentative values ofGb8(1),
F9(1), andc8(1). @The latter value cannot be determine
from ~2a! due to the 0/0 indeterminacy.# First, integration
runs up tox5xj where we introduce the jumps,dGb8 and
dF9, in Gb8 andF9. Then the integration continues up to th
wall, x5xc . Next we adjustF9(1), c8(1), dGb8, anddF9 to
satisfy vz(xj )50 and the no-slip conditionsc(xc)5Gb(xc)
5F(xc)50. Values ofGb8(1) andxj remain free and implic-
itly specify Res andM; the later two serve as control param
eters. The results described below are for the planar w
xc50.

Figure 7 shows the results of calculation for a swirl-fr
normal-to-wall jet induced by a weak singularity atxj
50.537~or u j557.5 °). All velocity and stress componen
as well as the axial-flow-force density (j 0) are continuous
while slopes of pressurep and t ru undergo jumps atu
5u j . The flow is close to the Schlihting@20# round jet near
the axis though the axial Reynolds number, Rea5rva /n, is
moderate (Rea520); va is the velocity on the axis.

This swirl-free jet depends on the flow force,J0 , in a
simple way without folds and hysteresis. Multiple flow stat
appears as the swirl Reynolds number, Res, exceeds its
threshold. Figure 8 shows a map of the flow state on
plane of control parametersM and Res. For small Res, there
is a single flow state at each value ofM. This is clearly
illustrated by the Res516 curve in Fig. 9. This figure plots
the maximum swirl velocityvf max versus the flow force~M!
at Res516, 23, and 30~also indicated in Fig. 8!. As Res
increases, the slope at the inflection point becomes ver
~e.g., the star symbol on the Res523 curve in Fig. 9, which

FIG. 7. Dependence of the velocity components, shear str
pressure, and the flow force density on the polar angleu for a
swirl-free jet induced by a weak singularity~jump in thet ru slope!.
2-6
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correspond to cuspC in Fig. 8!, and then three solution
branches develops~e.g., I, II, and III of the Res530 curve in
Fig. 9!. As M increases~or decreases!, jump transitions~ar-
rows! between two stable flow states~I and III! must occur at
the fold pointF8 ~or F! along the Res530 curve. Intermedi-
ate branch II represents the unstable state.

Curve S in Fig. 8 separates regions of one-cell~lower
inset! and two-cell~upper inset! flows. FoldsF andF8 ~see
the Res530 curve in Fig. 9! merging at cuspC (M
52.73, Res523) bound the region where three flow stat
exist at anyM and Res ~e.g., the Res530 curve in Fig. 9!.
Outside the region, the steady state is unique. The ver
line L at M53.74 is Long’s asymptote toF as Res→`. As
Res increases, the three-flow-state region expands for a l
range ofM.

FIG. 8. Map of the flow patterns on the plane,$flow force M,
swirl Reynolds number Res%, for the weak-singularity model. Curv
S separate one-cell~lower inset! and two-cell~upper inset! flows.
There are three flow states in the region between foldsF and F8
which merge and terminate at cusp pointC. Line L shows the Long
@19# asymptote for foldF as Res→`.

FIG. 9. Development of cuspC and folds F and F8 as Res
~shown near the curves! increases. The symbolvf max is the maxi-
mum swirl velocity asu varies at a fixedr. I, II, III mark different
solution branches and the arrows sketch hysteretic transit
among flow states.
01631
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Figure 10 shows the three solution branches at Res550. In
the consolidated jet, the outflow focuses near the axis and
velocity on the axis is also the maximum radial veloc
v r max as u varies at a fixedr @see Fig. 11~a! and the upper
inset for point I in Fig. 10#. All velocity and stress compo
nents reach their maximum values also near the axis@Fig.
11~b!#. Since Res (550) is rather large, this flow demon
strates some asymptotic features. In particular, there
wide interval of the polar angleu, where circulationGb is
nearly uniform and close to its maximum value Res550 @Fig.
11~c!#. The flow coincides with the consolidated Long jet
the near-axis region 0<u,u j but differs in the near-wall
regionu j,u<90 °.

Solutions at point II and III in Fig. 10 represent annul
jets where the velocity on the axis differs fromv r max. The
flow is one-cellular for solution II~the middle inset in Fig.
10! while the axial velocity is negative and the flow is two
cellular for solution III ~Fig. 12 and the lower inset in Fig
10!. The solution III, Fig. 12, is close to the two-cell annul
flow calculated in Ref.@11# inside the region 0<u,u j , but
these two flows differ in the vicinity of the wall. The dashe
branch in Fig. 10 depicts unstable solutions, e.g., at poin

Thus, three flow states can exist at the same value
control parameters. This feature is common for the Lo
Serrin, and the weak-singularity~considered in this section!
models. We conclude that multiple flow states and hyster
transitions among them are typical of near-wall swirlin
flows independent of where the motion sources are loca
on the axis, on the wall or in between. The hysteretic tran
tions occur via time-monotonic disturbances as shown
Refs.@12# and@21,22#. In contrast, the axisymmetry breakin
and precession development are due to time-oscillatory
stability, as discussed below.

III. THE STABILITY PROBLEM

The stability equations for conical flows are derived
Ref. @13#. Use of the new dependent and independent v
ables~as wells as the normal-mode technique! reduces the
linear stability problem to a system of ordinary differenti
equations~ODE!. The new dependent variables are

ns

FIG. 10. Multiple flow states I, II, and III~see also insets! at
Res550. The symbolv r max denotes the maximum radial velocity a
u varies at a fixedr.
2-7
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u~x,f,j,t!5v r r /n, y~x,f,j,t!5vur sinu/n,

G~x,f,j,t!5vfr sinu/n,

p~x,f,j,t!5~pI 2pI `!r 2/~rn2!,

where dimensionless variablesu, y, G, andp correspond to
the velocity components$v r ,vu ,vf% and the pressurepI , re-
spectively;pI ` represents a limiting pressure asr→`, r is
the ~constant! density, andn is the kinematic viscosity. The
new independent variables are

j5 ln~r /r 0!, x5cosu, and t5nt/r 2,

FIG. 11. Dependence of~a! velocity, ~b! stress, and~c! circula-
tion Gb and stream functionc on polar angleu for solution I in Fig.
10.
01631
where a length scaler 0 makes the argument of the logarith
dimensionless. The normal mode representation for dis
bances is

u5ub~x!1ud~x!E1c.c., y5yb~x!1yd~x!E1c.c.,

p5pb~x!1pd~x!E1c.c., G5Gb~x!1 iGd~x!E1c.c.,

whereE5exp(aj1imf2ivt), c.c. denotes the complex con
jugate of the preceding complex term, complexa5a r1 ia i
wherea r is the growth of the spatial mode with the radi
distance anda i is a radial wave number,m is an ~integral!

FIG. 12. The same as in Fig. 11 but for solution III in Fi
10.
2-8
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azimuthal wave number,v is the dimensionless frequenc
and the subscriptsb and d indicate base flow and distur
bance, respectively.

The real parta r of exponenta characterizes the spatia
stability, as r increases, ifa r,0, the disturbance decay
faster than the base flow; ifa r50, the disturbance amplitud
and the base flow have the samer dependence~their veloci-
ties decay asr 21); and if a r.0, the ratio of disturbance to
the base flow amplitude increases withr. Hence,a r,0, a r
50, anda r.0 correspond to spatial stability, neutral stab
ity, and instability of the base flow, respectively.

We consider a flow above the planex50, with the jet
source~vortex and radial velocity singularities! located on
the axis of symmetry,z ~Fig. 1!. Therefore, the flow region is
0<x,1. The axis of symmetry is a source of motion whe
the vortex singularity~i.e., nonzero circulation! and the axial
force are given for the base flow. This yields thatud(1)
50. The other boundary conditions,yd(1)5Gd(1)50 and
yd(0)5Gd(0)5ud(0)50, are the same as in Ref.@13#.

To find a nontrivial~eigen!solution for the normal modes
we should seek complex eigenvalues of eithera for a given
real v ~spatial stability! or v for a r50 ~temporal stability!.
This paper focuses on neutral disturbances, for which
results of the spatial and temporal stability approaches
identical ~sincea r50 andv is real!. However, to find neu-
tral characteristics of the Serrin vortex, we use the spa
stability approach. The reason is that all eigenvalues ofa are
known for Res5A5v50 and anym @20#. Eventually, by in-
creasing Res and A ~which characterize the strength of th
base flow!, as well as frequencyv, we finda by the Newton
shooting procedure using thea value found at previous pa
rameters for an initial guess. Applying this algorithm for
few spectral branches~that have the largesta r at Res5A
50) we find what disturbance mode is the most dangero
i.e., have the smallest critical values of Res and A. The nu-
meric technique of the stability studies is similar to that d
scribed in Ref.@13#.

IV. INSTABILITY OF THE SERRIN VORTEX

Figure 13 shows the results for the Serrin vortex on
control parameter plane~axial-force strengthA, swirl Rey-
nolds number Res). CurveC corresponds to the collapse o
the Serrin jet, the regular solution exists only below th
curve forA.0. This solution describes a one-cell ascend
flow ~right inset!. For A,0, the flow map is more compli
cated. There are descending one-cell flows in the region
low curveS ~lower inset! and two-cell flows above curveS
~upper inset!. Two flow states occur at the sameA and Res in
the region bounded by curvesC and F. The corresponding
solutions merge and disappear as Res increases and passe
the fold curveF. One of these solutions terminates as d
creasing Res passes the collapse curveC, while the other
exists for anyuResu,Ref where Ref(A) is a value of Res on
curveF.

We have found that as Res increases, them51 helical
mode first becomes growing. CurveI ~‘‘Instability’’ ! shows
the critical values of Res as a function ofA. For A>0, the
instability occurs for smaller Res than Res5Recol correspond-
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ing to the collapse~accordingly, curveI is below curveC in
Fig. 13!. At A50, for instance, the critical Reynolds numb
of them51 instability is Res55.05 while the collapse value
is Res55.53.

For A,0, the instability can occur at either smaller
larger Res than Recol , depending on the magnitude ofA. The
critical Res can exceed Recol because the corresponding flo
belongs to the solution sheet that spreads from the absc
Res50, up to the fold curveF in Fig. 13. A part of this shee
~which is located above curveI up to curveF! and the other
sheet~which is located between curvesF andC! correspond
to unstable flows.

Consider this instability in more detail for a specific valu
of A. To this end, we chooseA50 ~i.e., no axial force act-
ing!, where the axial Reynolds number, Rea5rva /n, where
va is the velocity on the axis, is bounded for a regular so
tion. The critical parameters atA50 are Rea536.4, a i
52.66,v523. Figure 14 shows~a! frequencyvI 5v/Rea ,
~b! radial wave numbera i , and ~c! phase velocityC
5vI /a i for neutral disturbances~real v and a r50) as Rea
varies.C is the disturbance wave speed normalized by
base-flow velocity on the axis.

Positive v indicates that the helical disturbances rota
around the axis in the same sense as the base swirling
and negativev corresponds to counter-rotating disturbanc
Figure 14~a! shows that the critical disturbance~occurring at
the smallest Rea) is counter-rotational~becausev,0).
While frequency changes its sign along the neutral curve,
wave number remains positive@Fig. 14~b!#. The phase speed
of neutral disturbances changes its sign@Fig. 14~c!# together
with v. PositiveC corresponds to disturbance waves prop
gating downstream in the base flow and negativeC corre-
sponds to waves propagating upstream.

Since the disturbance energy propagates not with
phase but group speed~speed of a wave group! we have also
calculated the group speed,Cg5dvI /da i , at each point of
the neutral curve. Figure 15 shows both the group~solid
curve! and phase~dotted curve! for comparison. While mov-
ing along the neutral curve from the upper to lower bran

FIG. 13. Flow and stability map on the plane,$swirl Reynolds
number Res , axial forceA%. Vertical ~dashed! and S lines separate
regions of different flow patterns~see insets!. CurvesC andF show
where collapse and fold occur. The flow is stable~unstable! below
~above! curve I.
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first the phase speed becomes negative~close to the critical
point on the upper branch!, and then the group speed b
comes negative~at Rea5250 and a i51.48 on the lower
branch!. Therefore, the instability is convective for Rea close

FIG. 14. Axial Reynolds number (Rea) dependence of~a! fre-
quency,~b! radial wave number, and~c! phase velocity of neutra
disturbances in the case of no axial force (A50).

FIG. 15. Group (Cg , solid curve! and phase~C, dotted curve! of
neutral disturbances (A50).
01631
to the critical value and becomes absolute for large Ra
(.250).

Figure 16 shows the radial velocity profile for the ba
flow, v r , and the disturbance kinetic energy, separately
the meridional,Em5uudu21uvdu2/(12x2), and swirl, Es
5uGdu2/(12x2), components at the critical value of Rea
536.4. SinceEm is significantly larger thanEs , the instabil-
ity affects more the meridional flow (v r andvu) rather than
the swirl (vf). The fact thatEm reaches its maximum nea
the inflection point ofv r(u) indicates the shear-layer mech
nism of instability.

Thus, the critical disturbance is counter-rotating (v,0)
and develops due to shear-layer instability. Such an insta
ity being single-helical (m521) shifts the jet center away
from and rotates the jet around the axis of symmetry of
base flow, i.e., induces the development of jet precession
describe the finite-amplitude precession, the nonlinear sta
ity and bifurcation of the secondary flow state establish
must be studied. This is beyond the scope of this paper a
subject for further study.

V. CONCLUSIONS

To understand the mechanisms of multiple flow states
precession, two intriguing and practically important pheno
ena observed in vortices normal to a wall, we have cons
ered conically similar models of the base flow and have
plored the flow stability.

New analytical solutions of the Navier–Stokes equatio
obtained herein explain the multiple flow states in the Se
model of a near-wall vortex. In addition, we have develop
a new model where no singularity occurs on the vortex a

FIG. 16. Radial velocity of the base flow (v r) and disturbance
meridional (Em) and swirl (Es) kinetic energy dependence on pol
angle u for the critical Reynolds number atA50. The fact that
disturbance energy reaches its maximal near the inflection poin
the base flow indicates the shear-layer character of the instabil
2-10
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This model well describes both the near-axis~in contrast to
the Serrin model@5#! and near-wall~in contrast to the Long
model @19#! flow regions. A weak singularity on a conica
surface located away from both the axis and wall mod
forces driving the flow. This singularity corresponds
jumps in the swirl shear stress and in the slopes of the
ridional shear stress and pressure.

Our numerical results for this model show that folds a
hysteresis develop as the swirl Reynolds number excee
threshold. These results, together with those for the Se
~this paper! and Long~Shtern and Hussain@11#! models, sug-
gest that multiple flow states are typical of the near-w
swirling flows, regardless of where the driving forces a
applied.

To explore the precession mechanism, we have extend
d
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new stability approach for~strongly nonparallel! conical
flows @13# to the Serin model where singularities are locat
on the axis. Numerical solutions of this stability proble
reveal that, as the swirl Reynolds number increases, he
disturbances of the azimuthal wave numberm51 first be-
come growing. This instability~being saturated to a finite
amplitude state! can induce bending and precession of t
vortex ~or swirling jet! axis observed in practical swirling
flows.
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